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The propagation of perturbations in a boundary layer under conditions when the velocity of the 

approaching stream may be both subsonic and supersonic is considered. With regard to the initial flow in the 

boundary layer it is assumed that it is stationary and possesses a spatial character which is caused by the 

external pressure gradient and not by the curvature of the body around which the flow occurs (boundary 

layers of this kind are extensively used in experiments at the present time). The linearized equations 

describing waves of vanishingly small amplitude are studied in detail. An analysis of the dispersion relation 

which links the frequency of the free oscillations with the components of the wave vector reveals a number 

of special features which are only present in motions with a three-dimensional velocity field. In particular, it 

is established that the Cauchy problem for the system of linear equations is ill-posed. 

As IS WELL known, the propagation of perturbations of any geometric configurations in an initially 
stationary two-dimensional flow obeys the equations of an interacting boundary layer in which the 
self-induced pressure gradient is subject to determination together with the velocity field. The 
asymptotic equations of the theory of free interaction have been derived in connection with an 
analysis of the motion of a fluid in the neighbourhood of the rear edge of a plate of finite length [ 1,2] 
and of the detachment of a supersonic boundary layer from the surface around which the flow occurs 
[3, 41. Later, spatial perturbations were considered both under stationary conditions [5] and as it 
applies to stability problems [6]. The latter area has been under extensive development and a review 
of the corresponding results is given in [7]. 

The asymptotic analysis in the papers mentioned above is based on the assumption that the 
Reynolds number R+ CQ, whence it follows that it is possible to introduce a small parameter 
E = RI’*. The Reynolds number is calculated using the distance L* from the leading edge of the 
plate, the velocity Urn*, the density pm* and the first coefficient of viscosity hl,* of the particles in 
the approach stream which are subjected to compression by a pressure Pm*. If the initial boundary 
layer possesses a spatial structure, it is necessary to interpret L* as being a certain characteristic 
dimension and U,*, psa*, P,* and A,* as being the corresponding external flow parameters at the 
point being considered on the surface around which the flow occurs. With such an approach, the 
Reynolds number R acquires a local character and can vary depending on the position of the chosen 
point. Changes in the velocity field and the thermodynamic functions in the external non-viscous 
flow occur, as a rule, due to warping of the surface around which the flow occurs. 

On the other hand, in recent times models in which the surface being studied with a boundary 
layer adjacent to it is planar but a pressure gradient is created artificially using various devices [8,9] 
are being ever more frequently employed in experiments. Such a technique has the advantage that it 
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enables one to avoid the effect of centrifugal forces, acting close to warped segments of the surface, 
on the propagation of perturbations within the boundary layer. A generalization of the theory 
developed in [5, 61, which includes spatial boundary layers of the above-mentioned type, has been 
outlined in (10, 111 and is developed below with the aim of elucidating new qualitative effects. 

1. THE EQUATIONS OF WAVE MOTIONS 

As is customary, we will subdivide the whole field of flow into three characteristic domains which 
are arranged one above another. In the upper domain, the effects of viscosity and thermal 
conductivity are not very pronounced and the perturbations of all the gas parameters will therefore 
be quantities of the same order of smallness. The central domain, which occupies almost the whole 
of the thickness of the boundary layer, to a first approximation, is also not subject to the influence of 
dissipative factors but it is substantially swirled and the lateral component of the velocity is 
comparable with its component in the direction of the main (external) flow. As far as the lower 
domain which is close to the wall is concerned, viscosity plays a decisive role in the formation of its 
structure while allowance for the thermal conductivity only becomes important when there is 
non-uniform heating of the surface. 

We denote the time by t *, place the origin of the Cartesian system of coordinates x * , y * and z * in 
a plane with the x * axis directed along the velocity vector of the external unperturbed flow at the 
point considered and line up the y * axis with a normal to the plane. As projections onto the axes of 
the selected system of coordinate, the velocity components will be u *, v * and w *. Furthermore, let 
p* be the density and P* be the pressure of the gas. Since our main interest lies in the study of the 
perturbations which propagate in a spatial boundary layer, we shall commence the analysis with the 
central layer, which includes the greater part of its thickness. Here, let us put 

t* = 82 (L*p,*) t’, x* = &3L*x’, y* = dL*y,, z* = E?L%’ (1 .I) 

and normalize the required functions in the following manner: 

u* = U,” [U,, (ys) + sr-42 (t’, x’, y,, 2’) + * * .I 

u* = u,* l&%7, (t’, x’, y,, 2’) + . . .I 

w* = u,* [U,, (y*) + EW, (t’, x’, y2, 2’) + * * .I 

p* = pm* [R,(y,) + EP2 (t’, 5’7 Y,, 2') + * * .I 

p* = Pm* + pm*Um*2 [E2p2 (t’, x’, y,, 2’) + . . .I 

(1.2) 

In expansions (1.2) the quantities rl;, , Urn and Ra are assumed to be known from a solution of the 
global problem of calculating a stationary boundary layer on a plane surface, the pressure gradient 
around which is created by any supplementary devices. It is obvious that lJ, is the velocity of the 
so-called secondary flow and, by virtue of the choice of the directions of the coordinate axes V,o-+ 1, 
Ud,+ 0 and yZ+ 00. 

By taking account of the scales of time and the spatial variables, which are defined by (1. l), and 
introducing the expansions (1.2) into the Navier-Stokes system of equations, we have 

s-t _!!L+$=O 

U a”‘+v2~+u~o~ =o 
x0 axI 
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u aloa + v= 
x0 at’ 

f.$+uzo~ =o 
(1.3) 

aPr=O 
aY2 ’ 

u *+v 
=o ad 

p~+uio~=o 

Here, the first three equations are separated from the remaining equations, which enables us to 
find the velocity field of the perturbations regardless of the changes in the excess density. We will 
now introduce an instantaneous displacement thickness A’(t’, x’, z’) into the treatment. In terms of 
this thickness the result of integration of the system of equations (1.3) reads 

au, 0 
dlJ. 

u2= A’-, 
hi2 

w2= A’-=, 
dy2 

p2 = A’+ 

i3A’ 
u 

aA’ u 
vz= --as, x0 -- &’ 20 

(1.4) 

The difference between the solution which has been constructed and that which determines the 
propagation of perturbations of an arbitrary configuration in the initial two-dimensional boundary 
layer is contained in the expression for the lateral component of the velocity of the particles. If 
I!.!, = 0, this component becomes of the order of E’ and occurs, as follows from [5, 61, because 
apz/az’ #O. The relationship between w2 and p2 in the case of waves travelling through a spatial 
boundary layer is established by the law governing their interaction with the external flow since an 
excess pressure is induced when there is a change in the displacement thickness. 

In order to formulate the above-mentioned law, let us consider the exterior flow domain. In this 
domain, the normalization of the time and the coordinate in the plane around which the flow occurs 
remains as before and the distance to it from a selected point in space is introduced by the 
relationship y * = ~~L*yr. The perturbations of all the gas parameters are proportional to Ed, 
whence 

u* = uoo* [I + E2U1 (f, x’, y,, 2’) + . . .I, v* = u,* [e2v, (t’, x’, y,, 

2’) + . . .I, w* = U,* [aswl V’, x’, y,, 2’) + . . .I, p* = pm* [I + cap (1.5) 

(t’, x’, Yr, 2’) + . . .I, P* = P,* + P,*U,*~ [egpl (t’, x’, yl, 2’) + . . .) 

As a result of substituting the expansions which have been written out into the system of 
Navier-Stokes equations and retaining just the leading terms in them, the problem reduces to the 
integration of a single equation for the excess pressure 

after which the components of the velocity vector of the particles and the variation in the density are 
calculated using the formulas 

~1 = --PI, PI = Mm2pl 

(1.7) 
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It is assumed that the perturbations decay upwards through the flow, that is, as x’-+ - 03. The 
Mach number is denoted by M, . Let us specify the vertical component of the velocity vI (t’, x ‘, 0, 
z’) in the plane yl = 0. The result of integrating Eq. (1.6), taking account of the relation between p, 
and vl, which is introduced by the second of the relationships (1.7), takes the form 

(1.8) 

subject to the condition that M, < 1. If the Mach number M, > 1, then 

(1.9) 

fk7/Mioo2--1, 6’ = 6’ (x’, E, y,; M,) = [ (9)” - Y21] % 

The expansions (1.2) for the main thickness of the boundary layer and the expansions (1.5) for the 
potential flow domain join together when y2+ 00 and yl-+O. On introducing the limiting values of 
U,, and UZO into the last of formulas (1.4), we obtain 

Ul (t’, x’, 0, 2’) = - +g, p1 (t’, 2’, 0,z’) = p2 (t’ Z’, 2’) (1.10) 

which repeats the results which refer to spatial perturbations which propagate in a compressed 
Blasius boundary level [5,6]. 

It remains to consider the lower domain in which y * = E~L*Y~. Here, the required functions are 
expanded in standard sequences. 

U* = u,* [EU3 (t’, 5’, y,, 2’) + . . .I, U* = u,* [E3V3 (t’, z’, y,, z’) + 

+ . . .l, w* = u,* I&W3 (t’,x’, y,, 2’) + . . .I, p* = pco* [pa (f, x’, Y,, 

2') + . . .I, P* = p,* -I- p,*v”,” wp, (t’, x’, y,, 2’) + . . .l (1.11) 

the nature of which can be simplified from the very outset by confining oneself to an analysis of 
purely mechanical oscillations and excluding internal temperature waves from it. As follows from 
[l-4], in this case p3 = R,(O) and the coefficient of viscosity A1* = A,,,,* = h,*[Z&(O)], where the 
subscript w refers to the value of this coefficient in the plane around which the flow occurs. For 
simplicity, let us assume that it is thermally insulated and that Chapman’s law hl,*/XI,* = CT,*/ 
T,*, which relates the coefficient of viscosity to the ratio of the wall temperature T,* and the 
temperature T,* of the surrounding space, holds. It is clear that T,*IT,* = Ro-'(0). When account 
is taken of the remarks which have been made, substitution of expansions (1.1) into the initial 
system of Navier-Stokes equations leads to the relationships 

(1.12) 
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Joining of the expansions (1.2) and (1.11) gives the limiting conditions 

%- 
dU* 0 (0) dU, ,, (0) 

&is ?Is+ &/* A’ @‘, 2’, 2’) 

(1.13) 

on the external edge y3-+~ of the viscous sublayer close to the wall which is being considered. 
Moreover, it follows from the joining conditions that p3(t’, x’, z’) = p~(t’, x’, z’) = p1 (t’, x’, z’) 
and that the latter of these quantities is expressed in terms of the instantaneous displacement 
thickness A’(t’, x’, z’) by means of equalities (1.8) and (1.10) or by means of (1.9) and (l.lO), 
depending on the Mach number of the approaching stream, As far as the surface y3 = 0 around 
which the flow occurs is concerned, the sticking conditions ~3 = v3 = w3 = 0 hold on it. 

Let 7, denote the absolute magnitude of the dimensionless friction applied to the wall in the 
initial boundary layer. Then, 

(1.14) 

In order to simplify the final formulation of the boundary value problem, we subject the 
independent variables together with the required gas parameters to an affine transformation [l-4]: 

(1.15) 

As a result of this, the Chapman constant C and the temperature ratio To = T,,,*/T,* = R,-‘(O) 
drop out of the differential equations (1.12) and they acquire the canonical form 

Here, by virtue of (1.8) and (1. lo), the pressure is given by 
OJ 00 

P=---i?;;-jdtS asA (6 &, f)/c?P 
d5 

-m --m [(I - EP + (1 - Jf,T (2 - SPI" 

(1.16) 

(1.17) 

in the case of a subsonic boundary layer with h4, < 1. The expression for the pressure in the case of 
an approach stream with a supersonic velocity, that is, when M, > 1, is found from (1.9) and (1 .lO): 

(1.18) 
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We note that, in both of the formulas (1.17) and (1.18), the dependence of the Mach number of 
the particles at infinity is preserved. In the case of spatial perturbations which propagate both in 
two-dimensional and three-dimensional boundary layers, it is impossible to eliminate this depend- 
ence by introducing the difference / 1 - M,* 1 in the similarity transformation (1.15). 

It remains to formulate the boundary conditions. When account is taken of (1.14), relationships 
(1.13), which have to be satisfied on reaching the external edge y -+ m of the viscous sublayer close 
to the wall, are transformed to the form 

U - z,y -+ r,A (t, Z, z), w - ‘G,y * r,A (t, r, 2) (1.19) 

Here, two new parameters, T, and r,, appear (in fact, it is only their ratio T,/T, which is 
important). As far as the conditions for the sticking of the gas particles to the surface y = 0 around 
which the flow occurs is concerned, they remain invariant 

u=v=w=o (1.20) 

The remaining boundary conditions will not be discussed since the subsequent analysis is 
concerned with free vibrations of infinitely small amplitude which possess a periodic structure with 
respect to the variables x and z. Furthermore, in order to carry out such an analysis it is convenient 
to turn to the initial equation (1.6) for the excess pressure while not using the results of its 
integration, which are expressed by relationships (1.8) and (1.9), which finally lead to (1.17) and 
(1.18) respectively. 

2. THE LINEAR APPROXIMATION 

Following the traditional theory of hydrodynamic stability, we will expand the required solution 
in series in the small parameter A, which is proportional to the amplitude of the travelling wave. 
Confining ourselves to terms which are linear in A, we can write 

(u - a.~, v, w - -czy, p, A) = Aei(ot+kz+mz) 1 -hG,f (Y)l g (YL a (!I), POY -401 (2.1) 

Substitution of (2.1) reduces (1.16) to a system of ordinary differential equations: 

dg - = - i (kz,f + rnT;h) 
dy 

3 - = i (0 + &J + mw) f + g + -$- p. 
dYa z 

(2.2) 

By virtue of (1.17), the link between the pressure and the displacement thickness at a subsonic 
velocity of the approach stream will be 

p. = k2 [(I - J,fmz) k2 + m21-‘~~A0 (2.3) 

In the case of a supersonic boundary layer with M, > 1, it follows from (1.18) that 

ika sign (k) [(Mm2 - 1) k2 - m2]-% A,, m2 < (Moo2 - 1) k2 

-((M,2-1)k2]-%A,, m2>(Ma2-1)k2 
(2.4) 
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Both in the case of the positive and negative values which are assumed by the two wave numbers k 
and m, the square roots of all of the expressions on the right-hand sides of (2.3) and (2.4) remain 
positive. The quantity m/k specifies the angle at which the wavefront is inclined to the velocity 
vector of the external unperturbed flow. We denote the Mach angle, which is defined as 

tgam = ~X@JI,~ - l), by (Y, . It can be seen from (2.4) that the dependence of the pressure on the 
displacement thickness in the supersonic boundary layer changes when the angle of inclination of 
the wave front becomes equal to the Mach angle. This property has far reaching consequences as 
regards the stability of oblique waves [12]. 

The limiting conditions 

f-+A,, h+Ao as y-too 

for the system of equations (2.2) are obtained from (1.19), while the equalities 

f=g=h=O wherry=0 

(2.5) 

(2.6) 

follow from (1.20). The boundary value problem which has been formulated enables one to 
calculate the frequency o of the free vibrations for any specified pair of wave numbers k and m if it is 
assumed that the Mach number M, and the quantities 7X and T*, which are proportional to 
components of the surface friction, are fixed. 

Let us now consider the reduced wave number K = k7, + rn7, and the function F = kT,f+ m7,h. 
By differentiating the second and third equations of system (2.2), we obtain 

d3Fldy3 - i (o + Ky) dF/dy = 0 (2.7) 

Precisely the same equation controls the propagation of Tollmien-Schlichting waves in a Blasius 
boundary layer with parameters which are constant along the z-axis. The property which has been 
noted constitutes the essence of a Squire transformation which therefore remains valid when 
account is taken of the lateral flows in the initial spatial motion of the gas. 

The limiting condition 

F-+KAo as y-+00 (2.8) 

for Eq. (2.7) is established using (2.5), and the equalities 

F = 0, daFldy” = i (k’ + m2) p,,, when y = 0 (2.9) 

follow from (2.2) and (2.6). The standard technique [13], which rests on the introduction of the new 
variable Y = fl+i”3K1’3y, R = i1’3~K2/3, -3nf2<argK<nf2 can be used to analyse (2.7). As a 
reSUk we arrive at the assertion that its solution, which satisfies the boundary conditions (2.8) and 
(2.9) exists, if p. and A0 are associated by the relationship 

qq = 
tit (P + m*) p 0 

K'laAo ’ 
CD(n) = 

I(Q) = TAi(Y)dY 
n 

(2.10) 

[Ai is an Airy function]. A second linear relationship between p. and A0 is established by 
formulas (2.3) or (2.4). The latter enable one to determine po/Ao at a fixed Mach number M, as a 
function of the wave numbers k and m. Elimination of po/Ao from (2.3) and (2.10) yields the 
dispersion relation 
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Q, (Q) = i’l~k2KJl~ (k2 + ma) [(I - Mma) ka + maI-‘/~ (2.11) 

for a subsonic boundary layer with M, < 1. In the case of an approaching stream with a supersonic 
velocity when M, > 1, the dispersion relation 

a (0) = 

I 

- i’/*ka sign (k) K-“‘” (It” + m2) [(IIZ,~ - l~y(gaJ-‘4 

ma-l)k2 (2.12) 

i11ak2KY8 (k2 + m2) [m2 - (A!,2 - 1) k2]-s, m2 > (Mm2 - 1) k2 

is obtained by eliminating poAo from (2.4) and (2.10). As (2.12) shows, when the angle of 
inclination of the travelling wave front reaches the angle at which the intersection of the 
characteristic surface is inclined to the surface around which the flow occurs a change occurs in the 
form of the dispersion relationship [12]. 

3. PROPERTIES OF THE DISPERSION RELATION 

In order to establish the symmetry property which is inherent in a dispersion relation, we shall 
initially assume that the two wave numbers k and m are real and positive (by virtue of the 
inequalities -37~12 < arg K < 7~12, negative values of k and m are interpreted as e-‘” k and e-‘“m, 
respectively). Let us now assume that the triad of numbers w, k and m, of which, generally 
speaking, w is complex, satisfies the dispersion relation (2.11) or (2.12). Then, the numbers -w,,,, 
-k, -m, where the index C.C. denotes a complex conjugate, also represent their solution. In fact, by 
definition, 

Q (- w~.~., -k, -m) = -i”~~.~. (-kr, - mq)-‘!~ = f&.,. 

By virtue of the properties of the Airy function, we have 

(3.1) 

@ WC.,.) = @ @2),X. (3.2) 

which denotes a transformation of the left-hand sides of the dispersion relationships to their 
complex conjugate values. As a result of substituting -k and -m instead of k and m, their 
right-hand sides are also subjected to an analogous transformation since the square roots of all the 
expressions occurring in them remain positive. 

At fixed k and m, the dispersion relations being considered have a denumerable set of roots, the analysis of 
which is simplified if one passes from the frequency w to the argument R = 1 ‘1’3~K-2/3 of the function @. These 
roots form an infinite sequence of points in the complex plane s1. When k and m start to vary, taking only real 
values, the points are displaced along certain trajectories which constitute a set of dispersion curves. However, 
a motion of each of these points along its own dispersion curve may take place in both directions even when 
there is a monotonic increase or decrease in the wave numbers. As the definition (2.10) of the function @ 
shows, when k-+0, the points being considered approach points on the real negative semi-axis in an 
unconstrained manner, the position of these points being given by the zeros of the derivative dAi(R)ldY. This 
property can be made use of in order to order the dispersion curves $ = fi,(k, m; T~, T-, M,) by labelling the 
roots of the equation dAi(Cl,)/dY = 0 with numbers. All of the dispersion curves, with the exception of the 
first, rest with their other ends at the points RI, (*I which are fixed by the complex conjugate zeros of the integral 
I(n) which is defined by the last of formulas (2.10). As far as the trajectory of the first root is concerned, it 
departs to infinity. 

We will now describe the results of a more detailed analysis of each of the dispersion relations which takes 
account of the specific nature of the initial boundary layers in the subsonic and supersonic states. Let US initially 
put M, < 1 and return to (2.11) where, without any loss in the generality, it may be assumed not only that T,>O 
but also that T,>O. The dispersion curves for the above-mentioned case are shown in Fig. 1. It is obvious that 
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FIG. 1. 

they are identical with the curves which are obtained in the analysis of the direct Tollmien-Schlichting waves 
which propagate in a Blasius boundary layer [13]. However, the motion of an image point along each dispersion 
curve as k and m are varied possesses features which are only inherent in a spatial flow with T, # 0. The first of 
the above-mentioned curves is of the greatest interest since it yields, as will become clear later, the image of the 
self-perturbing oscillations, while all the remaining curves refer to exponentially decaying pulsations. 

We will describe how the passage of the first dispersion curve is completed when m = m. = const and the 
longitudinal wave number k acquires negative and positive values. 

When k-* -CO, we have 

& + CO exp (5nilS) (3.3) 

An increase in k leads to downward motion along the curve in Fig. 1 up to a certain limiting point Ri., the 
position of which depends on the sign of the lateral wave number mo. Initially, let mo>O. The above- 
mentioned point 0,. is then located in the upper half plane (its coordinates are determined by m. and also by 
T*, T, and M,). On reaching the limiting point, the direction of the motion along the first dispersion curve 
changes into the opposite direction and, as a result, when K+O, that is, when k-+ -mo~z/~,<O, we have 
relationship (3.3) again. The transition through the value K = 0 is indicated by the commencement of motion 
along a branch of the dispersion curve in the lower half plane: 

9, + CO exp (--5ni/6) (3.4) 

if K+O+. It is clear that the limiting point of such motion will be the first zero ad 1 of the derivative of the Airy 
function which is attained when k = 0. After rotating at the point fl di , the motion along the lower branch of 
the dispersion curve is completed in the opposite direction up to (3.4) when k+ 00. 

The nature of the passage of the first dispersion curve in the case when mo< 0 is readily established using the 
symmetry properties, which are expressed by formulas (3.1) and (3.2). A change in the direction of motion 
along a branch of this curve, which is located in the upper half/plane occurs at the point rRdl when k = 0. The 
following transition through the value K = 0 entails the commencement of motion along a branch of the same 
curve in the lower half plane. The limiting point fii* is encountered here and the direction of the motion is 
reversed. It is important that, when mo#O, the points R i* and fidi are separated by a finite distance. If, 
however, m. = 0, then K = k7, and (2.11) therefore reduces to the dispersion relationship for direct 
Tollmien-Schlichting waves in a Blasius boundary layer. The result of this will be a merging of 0,. and &, 
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Fro. 2 

which precludes rotation at the double point which has been formed when k = 0. It is similar with the passage 
of the remaining dispersion curves in Fig. 1; the difference reducing to the fact that, when k+ + m, the quantity 
flj+ fi,j”‘. 

Let us now consider a supersonic boundary layer, retaining the assumption that r,>O, T=> 0 and 
immediately noting that the value of r,/rX = l/p, p = d/(Mm2 - 1) m a certain sense plays the role of a threshold 
in the subsequent analysis. When M, > 1, the dispersion relationship takes one of two forms (2.12) depending 
on the relative magnitude of (mlk)2 compared with Mm2- 1. As we did above, let us fix m = m0 = const. If 
k-t-a, (mdk)‘<Mm2- 1 a fortiori, whereupon it follows that it is necessary to use the first form of (2.12), in 
accordance with which we have 

52, --) 00 exp (--2ni/3) (3.5) 

Next, in the range of values of k < -1 m0 //p being considered, let the reduced wave number K be of constant 
sign, that is, it remains negative. If mo>O, then as a consequence of the constraint which has been formulated 
we shall have the inequality r,/r, < l/p, which denotes that the direction of the surface friction lies within the 
Mach angle (Y, of the approaching stream. On the other hand, the choice of mo<O does not impose any 
requirements on the ratio TJT~ whatsoever. As k increases, an upwards displacement commences along the 
first dispersion curve in Fig. 2 up to the limiting point Cli. (-) which is located in the lower half plane. After 
rotating at the above-mentioned point, the motion along the dispersion curve is completed in the reverse 
direction and, when k+ -/ m0 I/p, we get (3.5) again. 

The transition to positive values of k which satisfy the previous inequality (molk)*<MWZ - 1, produces a 
commencement of the motion along a branch of the dispersion curve in the upper half plane from 

51, ---t co exp (2ni/3) (3.6) 

when k+ 1 m. I/p. Let US assume that the reduced wave number k also does not change sign over the whole 
range of positive k> ) m. I/p, that is, it is positive in accordance with its limiting value when k+ 00. If mo< 0, the 
inequality Tz/Tx < l/p follows from the last constraint and only those directions of the surface friction which 
again fail within the Mach angle a, of the approaching stream satisfy it. On the other hand, for mo>O, there 
are no requirements imposed on the ratio TAT,. The downward displacement along the dispersion curve 

terminates at a certain finite k at the limiting point nis (+) which lies in the upper half plane. A further increase 
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in k is accompanied by the passage of the dispersion curve in the opposite direction and (3.4) is satisfied when 
k-+ m. The coordinates of both limiting points &*(‘) depend both on rno and rX, TV and tw, . 

Let us now continue the analysis of the first form of the dispersion relationship (2.12) by assuming that there 
is a change of sign of the reduced wave number Kin one of the ranges of k values which have been considered 
above. A change in sign is only possible subject to the condition rZz/rX > lip. This condition holds in the range of 
negative k-c -moiP, if mo>O, or it is realized after a transition into the range of positive values k> Imo/ifS, 
when mo<O. Let the first of these possibilities with mo>O be realized. Motion along the first dispersion curve 
begins when k+ --co from the neighbourhood of the singular point (3.5) in the lower half plane and continues 
up to the limiting point Cl,.(-), where K<O. However, in the motion along the same curve in the opposite 
direction, the limit (3.5) is attained due to K-+0 and not by virtue of the fact that k-, -mo/f3. It can be seen 
from Fig. 2 that, as a result of passing across the value K = 0 an additional special branch of the dispersion 
curve from 

Q1 -+ cv exp (4x13) (3.7) 

arises when K-+0_ on which a new limiting point ftl*. (-I is located. After rotation at this point, entry to the 
singular point (3.7) occurs when k = -m&. The jump to positive k-+m&3 involves the commencement of 
downward motion along the main branch of the dispersion curve in the upper half plane from the 
neighbourhood of the singular point (3.6). As is customary, this branch is traversed twice, the change in the 
directions of the motion occurs at the limiting point fi,.(‘) and the sign of K is kept positive. 

The analysis of the other possibility, which is expressed by the inequality mo<O, leads to the following 
changes in the use of the branches of the first dispersion curve in Fig. 2. These changes are established using the 
symmetry formulas (3.1) and (3.2). Since the sign of K remains negative for all k < - / m. l/p, it is only necessary 
to return to the main branch of the curve which rests upon the singular point (3.5). Since the change in the sign 
of K from negative to positive occurs in the interval k> Imoj//3, the motion in the upper half plane proceeds 
both along the main branch and along the auxiliary (singular) branches of the dispersion curve. A singular 
branch is initially traversed and the jump to an in~niteIy remote point of this branch 

62, -f CQ exp (~~/3) (3.8) 

is completed when k+ /m. j/P. After a change in sign of K, it is necessary to include the main branch with the 
singular point (3.6) at infinity in the treatment. 

When mo#O, the limiting points a,*(-) and R1.(+), which are located on the two main branches of the 
dispersion curve, are separated by a finite distance. If, however, m. = 0, then K = kTx and the first form of 
(2.12) therefore reduces to the dispersion relation for direct Tollmien-Schlichting waves which propagate in a 
supersonic Blasius boundary layer. The result is expressed in the merging of fl,*(-) and a,*(+), which 
represents a rotation at the double point which is formed, this obviously coincides with &. As far as the two 
singular branches of the first dispersion curve is concerned, they cease to exist, since a jump in the location of 
the infinitely remote points (3.7) and (3.8) on them is accomplished either when the sign of K is changed or 
when k+ TImo/lf3. In these cases, the equality m. = 0 implies that k = 0. The remaining dispersion curves 
behave in a completely analogous manner, the difference lying in the fact that, in the limit, C++C&,“’ when 
k--+&m. 

7t remains to describe the results appertaining to the second form of the dispersion relation (2.12). Since it 
holds for (mlk)2 > Mm2 - 1 then, at a fixed m = mo = cons& the limiting value of k+Tm are excluded from the 
analysis. If the reduced wave number I( changes sign, for which it is necessary to impose the requirement that 
rZ/rX < lip, the nature of the motion along the branches of the first dispersion curve are qualitatively the same 
as in the case of a subsonic boundary layer which has been analysed above. It is clear from this that, in order to 
illustrate the basic conclusions, it is necessary once again to turn to Fig. 1 but to take account of the fact that the 
infinitely remote points depicted in it are reached when the values k-+ T 1 m. Iif3 are taken instead of the earlier 
limits k-+ + 00. Retention of the sign of the reduced wave number K over the whole range of variation of k 
changes the situation: the branch of the main dispersion curve located on it at the point of rotation a,. ceases to 
exist, yielding the origin of the additional (singular) branch shown in Fig. 2. As far as the other branch of the 
first dispersion curve from the point f2 dl is concerned. motion occurs along it, as usual, in the forward and 
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reverse directions. The total number of branches of the first dispersion curve, which are used in the analysis of a 
supersonic boundary layer, remains equal to four. Similar remarks hold for the remaining dispersion curves 
which rest upon their own termini at the points CIj+R, (‘I when k-+ ?lmol/P. Note that, when rn,) = 0, a 
second form of the dispersion relation is generated by assuming the form k = 0. 

As can be seen from Figs 1 and 2, the dispersion curves, which are images of the trajectories of the 
roots of the dispersion relation (2.11) and (2.12), do not intersect for arbitrary real k and m. It 
follows from this that any two functions wP = q,(k, m; TV, -rz, M,) and oq = ws(k, m; TV, T=, M,) 
determined by them take different values for the same k and m if p #q. In other words, there are no 
branching points in the complex plane w if k and m are confined to being real numbers. 

4. STABILITY ANALYSIS 

The decay or build-up of oscillations is determined by arg o of the complex frequency o and, in 
fact, the amplitude of the pulsations increases exponentially subject to the condition -IT < argo < 0. 
Since argK can only be equal to 0 or to -rr when the two wave numbers k and m are chosen to be 
real both the subsonic and supersonic boundary layers lose stability in the intervals of change in 
argfi which are specified by the following inequalities: 

-5nl6 < arg Q < n/6, for arg K = 0 
--n/6 < arg 52 < 5x/6 for arg K = -xc (4.1) 

We will now consider subsonic flow. Rays, with a slope which is fixed by argR = 5~16 and 
argSZ = -5n/6, are represented by the dashed lines in Fig. 1. These rays only intersect the first 
dispersion curve with the same entry angles at the infinitely remote singular points 
Ri+ CJJ exp(+%ri/6), that is, a range of real values of k and m exist in the case of the named curve 
which ensure that the inequalities (4.1) are satisfied. It is concluded from this that the first root of 
the dispersion relation (2.11) can represent the parameters (frequency and pair of wave numbers) of 
unstable free vibrations. As far as all the remaining roots are concerned, they correspond to 
perturbations with an amplitude which decays exponentially with time. Hence, the analysis of the 
stability of a spatial boundary layer with M, > 1 repeats to a significant extent that which was 
developed in [13] as applied to direct Tollmien-Schlichting waves which propagate in two- 
dimensional flow in the case of a plate (the difference reduces to the traversal of the dispersion 
curves in the forward and reverse directions). 

The question of the stability of a supersonic spatial boundary layer is solved somewhat more 
subtly. We begin with the second form of the dispersion relationship (2.12) which holds subject to 
the condition that (mlk)2> Mm2 - 1. Since this form becomes degenerate at k = 0 when m = 0, its 
application is exclusively associated with oblique Tollmien-Schlichting waves. The existence of a 
range over which they are unstable is readily established using the same Fig. 1. Taking account of 
the relationship k/m = tgy, where we denote by y the angle of inclination of the wave front to the 
velocity vector of the external unperturbed flow, we emphasize that the oblique waves under 
consideration propagate in directions which satisfy the condition y < CY+, . In the case of such waves, 
the projection of the velocity of the external flow on the normal to the front is smaller than the local 
velocity of sound, that is, the mechanism of the instability of a supersonic spatial boundary layer is 
essentially explained in the given case by factors which cause an exponential increase in the 
oscillations in a viscous flow at subsonic velocities. 

By putting (mlk)2 < Mm2 - 1, we return to the first form of the dispersion relationship (2.12). All 
the oblique Tollmien-Schlichting waves which propagate in a two-dimensional Blasius boundary 
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layer subject to such a constraint are stable [12]. Actually, the values of R calculated using their 
parameters form the main branches of the first dispersion curve in Fig. 2 with the singular points 
Ri+ CO exp(T2+/3) which do not fall within either of the intervals (4.1). The presence of a lateral 
component 7, in the surface tension leads to a new instability mechanism. It is clear that self-exciting 
oscillations can only be represented by special branches of the dispersion curve which are fixed by 
the infinitely remote points Rr+ 0~) exp( Td3) within (4.1): the form of the main branches is 
independent of T* (only the positions of the points of rotation fir*(+) on them changes). However, as 
was established above, the formation of special branches is caused by a change in sign of the reduced 
wave number K, for which it is required that the condition T,/T, = l/l3 = (Y, should be satisfied. 
Hence, a supersonic spatial boundary layer can lose stability if the direction of the surface friction in 
the plate reaches beyond the Mach angle of the approach stream. As far as the angle of inclination 
of the wave front to the velocity vector of the external stream, y, is concerned, this angle y>a, 
also. 

For a more complete analysis of the properties of unstable motion under subsonic and supersonic 
conditions let us consider the level lines of the function Imol by assigning real values to the wave 
numbers k and m. The first of these cases is illustrated in Fig. 3, in the construction of which we put 
M, = 0.1, rX = 7, = e/2. In particular, we note that the shape of the curves in the k, m plane 
confirms the symmetry property of the roots of the dispersion relationship found above, which is 
expressed by means of formulas (3.1) and (3.2) 

We will prove the fundamentally important fact that domains exist where Imo, is not only smaller 
than zero but also increases in absolute magnitude as /k 1 and 1 m 1 increase. In other words, the 
Cauchy problem for the linearized system of equations (1.16) with the pressure introduced using 
(1.17) is, generally speaking, ill-posed according to Petrovskii [14]. 

For this purpose, let us consider the first quadrant of the k, m plane: it is seen from Fig. 3 that the 
third quadrant possesses an analogous structure. Let us put m = ck3, c>O and let k+ ~0. To a first 
approximation, the dispersion relationship (2.11) then reduces to the form 

@ (Q) = i’frc-‘l~~‘~l”, 0 = i-‘lnQc’lar,V~k~ (4.2) 

on the right-hand side of which neither k nor m appear. Let us compare (4.2) with the dispersion 
relationship for direct Tollmien-Schlichting waves which propagate in an incompressible Blasius 
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boundary layer which corresponds to m = T, = 0. In the latter case, the amplitude of the 
perturbations remains constant in time if the wave number k = k, = 1.0005. It follows from this that 
the constant c = c, = k*-2~,-s’2 = 
boundary layer for any M, < 1. 

0.999~,-~‘* specifies neutral oscillations in a subsonic spatial 

The curve m = c,k3 serves as an asymptote which separates the self-exciting pulsations for which 
c < c, from the stable waves with c > c, . Furthermore, it is possible to separate out from among the 
perturbations in an incompressible Blasius boundary layer those perturbations whose amplitude 
growth increments attain external values. In the terms adopted in [13], the corresponding wave 
numbers are defined ask = k* = 2.716 and k = k4* = 4.346 for the maxima, while k = k3* = 3.616, 
which realizes a minimum, lies between them. It is clear that c = c2* = (k2*)-27,-s’2 = 0.1356~,-~‘~; 
c = cs* = (,&*)-27,-s’2 = 0.076487,-“‘* and c = c, = cq* = (k4*)-*7, -s’2 also possess similar extrem- 
al properties: on substituting them into the right-hand side of (4.2), they yield solutions s1, with 
local negative minima Im(i-“3KIR12*~2*2’3~Z2’3) and Im(i-““R14*~q*2’.7~,2’3) and the local negative 
maximum Im(i-“3~,,*c~*2’37,2/3 ). It follows from this that the rate of growth of the amplitude of 
the self-exciting pulsations being considered, for which the constant c<c, , obeys the estimate 
Imw, - -k2 -+ - 00 in the limit as k-+ W. The assertion concerning the ill-posed nature of the Cauchy 
problem is therefore proved. 

The contours of the domain around the first principal maximum Im (i-“.3~2,2*c2*2’372*“) can be 
clearly seen in Fig. 3. The irregularities in the behaviour of the level line of Imwi are associated with 
the local maximum Im(i-“3f113*~3*2’3~,U3) and, secondly, with the more weakly expressed 
minimum Im(i-“3~14*~q*U37,2’3). 

We may arrive at the conclusion that the Cauchy problem is ill-posed for the linearized system of 
equations (1.16) and (1.17) by also considering the second quadrant of the k, m plane shown in 
Fig. 3. The fourth quadrant has a similar structure. Putting m = ck’, c<O, we shall assume that 
k-+ --co. It follows from the fact that m>O that K>O and, hence, both relationships (4.2) remain 
true if c is replaced in them by 1 c / . It follows from what has been said above that the curve m = c,k3 
with the coefficient c, = 0.999~~~“‘* is the second branch of the asymptote which separates the 
self-exciting pulsations from the stable waves with an exponentially decaying amplitude. A domain 
is clearly separated out to the left of this branch whose existence is attributable to the principal 
minimum Im(i-“3R12*~2*2’3r,2’3 ). It is difficult to distinguish the irregularities in the lines of the 
level of Imo, which are generated by the local maximum Im(i-“‘~i3*~~*2’3~,2’3) and the second 
minimum Im(i-1’3fl,4*cq*U3rZ2’3 ). It is fundamentally important that, in the limit as k+ - 00, the 
rate of growth of the amplitude of the self-exciting pulsations with a constant ( c ( Cc, should satisfy 
the estimate Im w, - - k2+ - m. 

We will now examine the results of an analysis of oblique Tollmien-Schlichting waves which 
propagate in a supersonic spatial boundary layer. Again, let m = ck3, where the constant can be 
both positive as well as negative and let us put k+ +m, respectively. Such perturbations obey the 
second of the forms of the dispersion relation (2.12) which, to a first approximation, reduces to (4.2) 
with c replaced by 1 c 1. The conclusion concerning the Petrovskii ill-posed nature of the Cauchy 
problem for the linearized system of equations (1.16) with the pressure defined by relation (1.18) 
immediately follows from this. In this case, the ill-posed nature of the problem is caused by waves 
with a direction of the normal to the front which exceeds the Mach angle (Y, of the external flow. 
Furthermore, the vortices in such waves (as in the analogous waves moving in a subsonic boundary 
layer) are elongated in a direction which is very close to the direction of the main flow. 

In concluding we note a feature in the solution of the dispersion equations which results from the 
passage of the reduced wave number K through zero. The obvious sense of the equality 
K = k7, + m7, lies in the requirement that the wave vector should be orthogonal to the vector of the 
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surface friction applied to the wall, Using (2.1) in the case of a subsonic boundary layer in the limit 
when K-+0 (k-+ko, m+mo = -ko~,h,), we have 

Cl-t q=-y- 2 E” (If i) JJ + . . . 

kc? (kc?+ mea) 
d= [(I -Mm’) k,‘+ m,,‘]% (4.3) 

A similar feature has recently been pointed out in the case of Gertler vortices in an incompressi- 
ble fluid which flows around a warped cylindrical surface with genetratrises which are perpendicular 
to the velocity vector of the basic motion [1.5-171. Although Imq = q2K3/(2co)+0 here together 
with K-+0, the exceedingly pronounced singularity in Reo, may turn out to have a substantial 
effect on the propagation of complex wave structures (of wave packets, for example). 

In the case of free vibrations with m2> (M,* - l)k2 which occur in a supersonic boundary layer, 
the first of formulas (4.3) remains true if by the constant c0 one understands 

a- co - 
kc,’ (kr,’ + mo’) 

[q, - (M,’ - 1) k,,‘]% 
In this case, as was shown in the preceding section, r,/~,< l/p, that is the direction of the surface 

friction falls within the Mach angle oco of the approach stream. 
On the other hand, let the velocity field in the initial spatial boundary layer be such that 

7,/rX> l/p. As an example, the lines of the level of the function Imwi in the plane of real wave 
numbers k and m are plott_ed in Fig. 4. The parameters of the unperturbed motion were chosen as 
follows: M, = 2.1, T, = v3/2 and 7, = l/2. The surface friction vector is now very strongly inclined 
from the direction of the external flow and lies outside the Mach angle CL corresponding to it. It was 
established in the preceding section that the transition through the value K = 0 in a boundary layer 
with the structure being considered can only be attained in waves which satisfy the condition 
m2 < (M,* - 1) k* which means that the angles of inclination of their fronts with respect to the 
direction of the external flow exceeds the Mach angle CL. Returning to the first of the forms of the 
dispersion relationship (2.12), we find 

q = i sign (li) -$ + . . ., co2 = ha (k,* + mE) 

[(M,a - 1) k,’ - m,,a].~ 

-. 2 -I 0 I x 

FIG. 4. 
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It is obvious from this that the transition through K = 0 implies a change in sign of Imor where 
here Imoi = -co2/K-+-m when k<O and K+O+ and, similarly Imo, = -co2/1KI+-m when 
k>O but K-+ O-. Hence, even in the case of finite values of the two wave numbers k and m, the 
Cauchy problem for the linearized equations (1.16) and (1.18) is ill-posed according to Petrovskii if 
the vector of the viscous friction on the bottom of the boundary layer deviates sufficiently strongly 
from the direction of the supersonic flow on its external edge. Actually, the reason why the problem 
is ill-posed is the long-wavelength vortices which are extended along the direction of the surface 
friction (as a rule, the pulsations from the short-wavelength part of the spectrum possess this 
property). In the final analysis, the spatial inhomogeneities which were initially in the initial 
boundary layer or which arose during the initial phase of the development of unstable oscillations 
are capable of exerting a powerful destabilizing effect on the whole course of this process. 
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